Direct quantum dynamics using variational Gaussian wavepackets and Gaussian process regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct quantum dynamics using variational multi-configuration Gaussian wavepackets. Implementation details and test case.

We present here a direct quantum dynamics method using variational multi-configuration Gaussian wavepackets. Based on the efficient multi-configuration time-dependent Hartree wavepacket propagation algorithm, it uses on-the-fly quantum chemical calculation of the potential energy and its derivatives rather than fitted surfaces. Intermediate results are stored in a database so that expensive qua...

متن کامل

Variational Heteroscedastic Gaussian Process Regression

Standard Gaussian processes (GPs) model observations’ noise as constant throughout input space. This is often a too restrictive assumption, but one that is needed for GP inference to be tractable. In this work we present a non-standard variational approximation that allows accurate inference in heteroscedastic GPs (i.e., under inputdependent noise conditions). Computational cost is roughly twic...

متن کامل

Quantum assisted Gaussian process regression

Gaussian processes (GP) are a widely used model for regression problems in supervised machine learning. Implementation of GP regression typically requires O(n) logic gates. We show that the quantum linear systems algorithm [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)] can be applied to Gaussian process regression (GPR), leading to an exponential reduction in computation time in some inst...

متن کامل

Asynchronous Distributed Variational Gaussian Process for Regression

Gaussian processes (GPs) are powerful nonparametric function estimators. However, their applications are largely limited by the expensive computational cost of the inference procedures. Existing stochastic or distributed synchronous variational inferences, although have alleviated this issue by scaling up GPs to millions of samples, are still far from satisfactory for real-world large applicati...

متن کامل

Incremental Variational Sparse Gaussian Process Regression

Recent work on scaling up Gaussian process regression (GPR) to large datasets has primarily focused on sparse GPR, which leverages a small set of basis functions to approximate the full Gaussian process during inference. However, the majority of these approaches are batch methods that operate on the entire training dataset at once, precluding the use of datasets that are streaming or too large ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Chemical Physics

سال: 2019

ISSN: 0021-9606,1089-7690

DOI: 10.1063/1.5086358